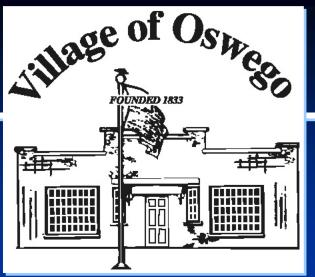
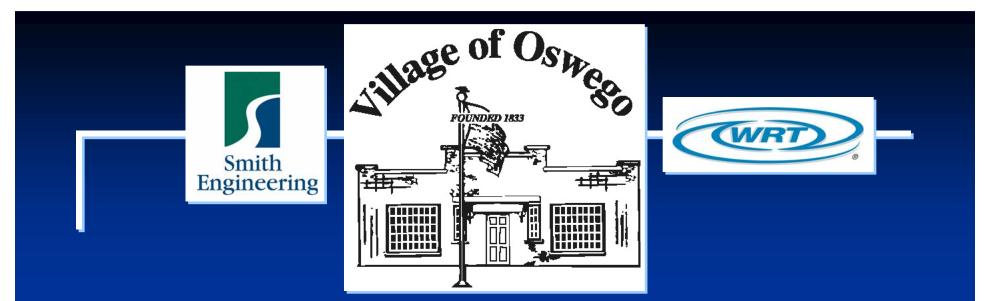

New Technology for Radium Removal at the Village of Oswego


From Evaluation through Full Scale Installation and Operation

Outline

- Introduction
- Evaluation of Treatment Technologies
- Pilot Study
- Design of Treatment System
- Fabrication and Construction
- Start-Up of Treatment Plants
- Summary



Introduction

Village of Oswego

- Located approximately 40 miles southwest of Chicago
- Experiencing rapid growth, current population 22,000
- Water supply consists of five deep sandstone wells, plus 2 wells under construction
 - □ Capacities of 750 to 1,200 gpm
 - □ Radium levels range from 7 to 18 pCi/L
 - No other treatment, only the addition of chlorine and polyphosphate
- Entered into a compliance agreement with IEPA

Evaluation of Treatment Technologies

Comparison of Radium Treatment Technologies

	Z-88 ™ Ion Exchange	Conventional Ion Exchange	НМО	Reverse Osmosis	Lime Softening
NSF Std.61 Certified for use in potable water	Yes	Yes	Yes	Yes	Yes
Chemical Addition	No	Yes	Yes	Yes	Yes
Liquid Waste Generated	No	Yes	Yes	Yes	Yes
Changes in Other Water Quality Parameters	No	Yes	Yes	Yes	Yes
Type of Operation	Passive	Active	Active	Active	Active
Design Scale	Individual Well	Individual Well	Individual Well	Individual Well	Centralized Location
Disposal of Radium	Approved Landfill	Sewer	Sewer	Sewer	Land / Landfill
Combined Radium in Residuals (13 pCi/L in source water)	1,200-2,000 pCi/g	100-2,000 pCi/L	5,000-15,000 pCi/g	25-150 pCi/L	10-20 pCi/g of sludge
Equipment / Media Ownership	WRT	Utility	Utility	Utility	Utility
IDNS License Holder	WRT	?	?	?	?
Guaranteed Performance	Yes	No	No	No	No

WRT

Increase In Radium for Disposal Resulting From New Regulations

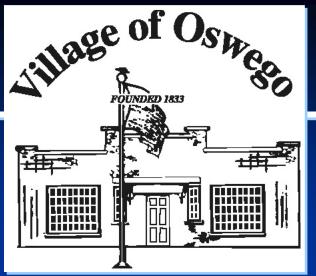
HMO, Conventional Ion Exchange and Reverse Osmosis

- □ The summer water production in Oswego was 42% & 59% above the winter average during 2003 & 2004 respectively
- □ Under new radium regulations, all water produced must meet the standard
- □ For these treatment processes, the additional radium removed from irrigation water and other seasonal uses is discharged to sanitary sewers
- □ Results in an increase in the annual amount of radium at the wastewater treatment plant of 18% & 22% for 2003 & 2004 respectively
- □ Results in an increase in wastewater radium concentration during the summer months, especially during dry periods

WRT Process

- □ All radium is disposed of in a licensed and permitted LLRW (Low Level Radioactive Waste) facility
- □ Results in a reduction in the amount of radium at the wastewater treatment plant

Evaluation Treatment Technologies


- After an evaluation of alternatives and given the preferences of Oswego, the WRT process utilizing their Z-88 TM media was selected
- Village preferred the simplicity of the WRT Process
 - □ Passive treatment system no additional plant operators
 - □ No chemical handling, storage or feed systems
 - □ No liquid waste streams or sludge disposal issues
 - □ WRT retains ownership of equipment and media; ownership of spent media is transferred to the disposal site

WRT Process was least expensive

- No capital costs for equipment \$1.7 million savings over conventional ion exchange
- □ Over twenty years; \$500,000 savings over conventional ion exchange

Pilot Study

Pilot Study Phase

- Self contained pilot system was used for:
 - Demonstrating the technology
 - Determining media life
 - □ Establishing operating costs
 - □ Meeting regulatory requirements
- Utility monitored operation and collected samples
- Pilot unit and analytical services were provided by WRT

Pilot Study Phase

Well capacity: Alkalinity: Hardness: Iron: pH: Gross alpha: Radium 226: Radium 228: Comb. Ra 226,228: In Operation:

1,000 GPM 295 mg/L 229 mg/L 0.28 mg/L 7.7 16.8 pCi/L 9.1 pCi/L 8.7 pCi/L 17.8pCi/L 7/11/02 to 12/2/03 (3 months required by IEPA)

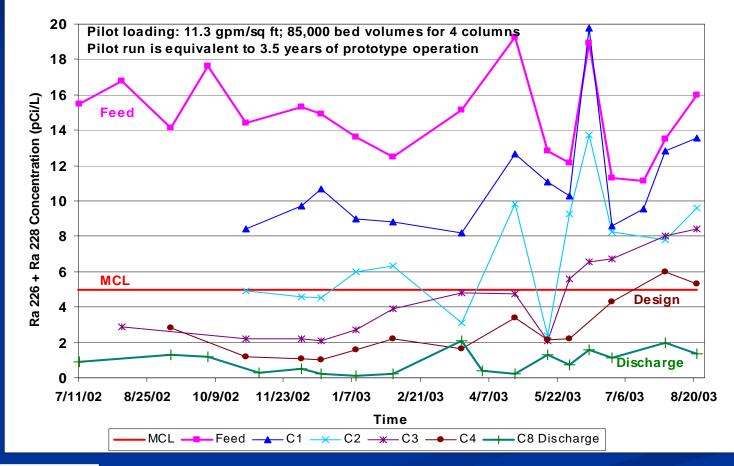
Pilot Study Report - Oswego

Pilot Study Report for Z-88 TM Radium Treatment Process

conducted at the

Village of Oswego, Illinois

in conjunction with

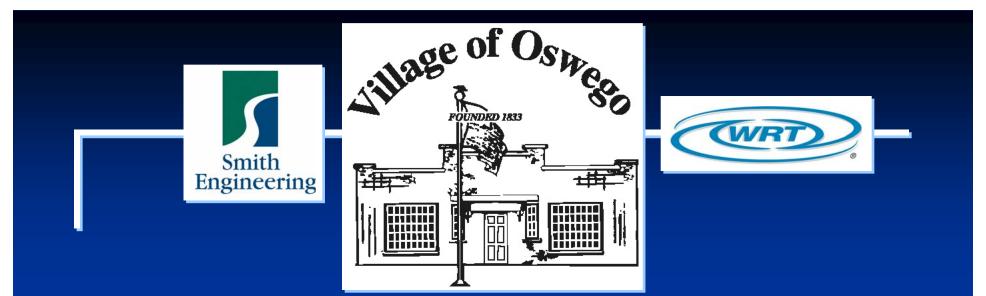

Smith Engineering Consultants, Inc.

> November 13, 2002 www.wrtnet.com

Pilot Study Report - Oswego

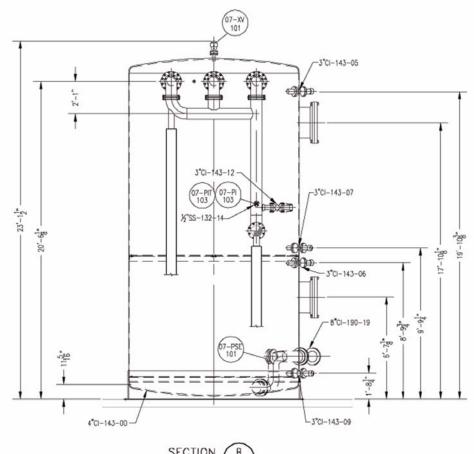
Pilot Results for Oswego, Illinois

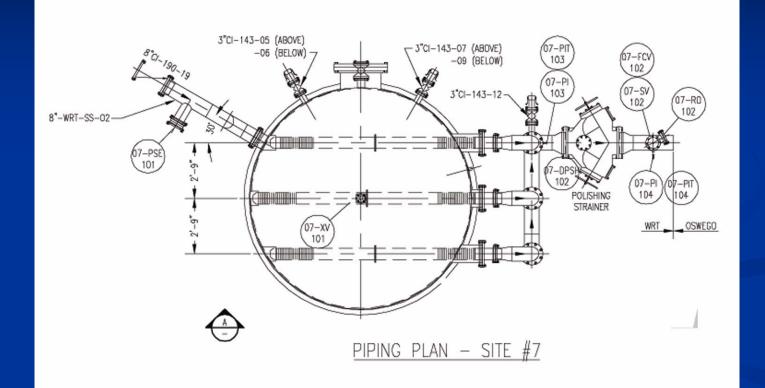
Oswego – Water Quality Data

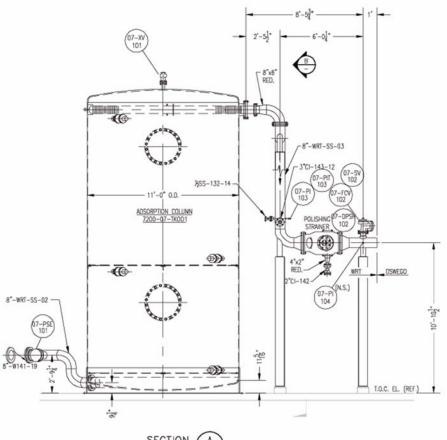

<u>ltem</u>	Pre WRT Process	<u>Units</u>	Post WRT Process
Alkalinity	361	mg/L	356
Antimony	< 0.006	mg/L	< 0.006
Arsenic	< 0.05	mg/L	< 0.05
Barium	< 1	mg/L	< 1
Beryllium	< 0.004	mg/L	< 0.004
Cadmium	< 0.005	mg/L	< 0.005
Calcium	56.9	mg/L	56.3
Chromium	< 0.05	mg/L	< 0.05
Copper	< 0.2	mg/L	< 0.2
Cyanide	< 0.007	mg/L	< 0.007
Fluoride	0.92	mg/L	0.93
Hardness	240	mg/L	260

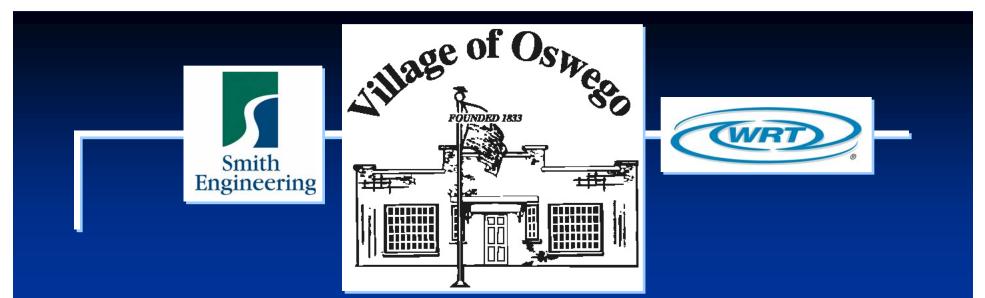
Oswego – Water Quality Data

<u>ltem</u>	Pre WRT Process	<u>Units</u>	Post WRT Process
Iron	0.3	mg/L	0.19
Lead	< 0.005	mg/L	< 0.005
Magnesium	22.4	mg/L	22.3
Mercury	< 0.2	μg/L	< 0.2
Nickel	< 0.1	mg/L	< 0.1
Nitrate + Nitrite as N	< 0.06	mg/L	< 0.06
Nitrite	< 0.06	mg/L	< 0.06
рН	6.84		6.74
Selenium	< 0.05	mg/L	< 0.05
Sodium	25.3	mg/L	24
Sulfate	13.2	mg/L	15.6
Total Dissolved Solids	318	mg/L	316




- Design flow: 1,000 gpm
- Upflow, fluidized bed
- Single vessel with two stages
 11.0 ft. diameter
 22.0 ft. overall height
 - □ 5.25 ft. media per stage
- Total pressure drop <10psi
- Loading: 10.5 gpm/ft²
- Media life: 2 4+ years, varies with well site
- Post-treatment addition of polyphosphate and chlorine




Space required: 25 ft. x 25 ft.

Fabrication and Construction

Vessel Fabrication

Construction Project

- Well House Additions Radionuclide Compliance
 Five Treatment Plants
 - Design flows:
 - Construction cost:
 - Construction complete
- Well House/Treatment Buildings New wells
 - **Two Treatment Plants**
 - Design flow:
 - Construction cost:
 - Under construction

Two @ 1,200 gpm \$2.6 Million

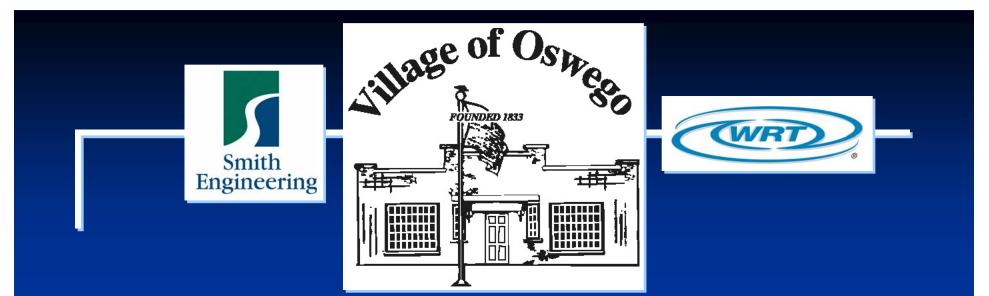
Well house additions and new buildings designed by PHN Architects

Four @ 1,000 gpm One @ 750 gpm \$3.0 Million

Construction

Installation

Completed Installation



Completed Installation

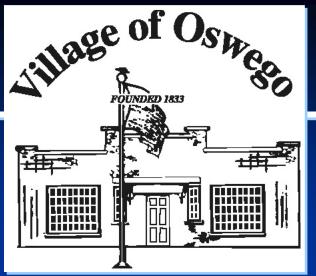
Completed Construction

Start-up of Treatment Plants

Start-up of Treatment Plants

■ Start-up

- Media rinsing and disinfection is required prior to online operation
- Media rinsing equipment and procedure required modifications based on the experience with the first vessel


Operating results					
		Oswego Well No. 7		Oswego Well No. 6	
		Feed (pCi/L)	Discharge (pCi/L)	Feed (pCi/L)	Discharge (pCi/L)
	Combined Radium	16.5	1.1	5.3	1.0
village of Oswes					

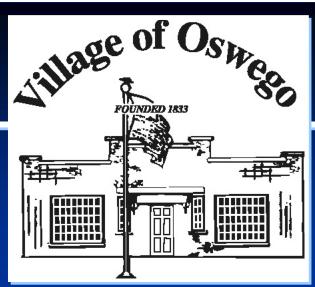
Start-up of Treatment Plants

- IEPA operating permit has been issued for one well site
- Ready for on-line operation pending formal approval of IDNS licensing agreement with WRT
- Media needs to be loaded and disinfected at three sites

Summary

Summary

- Pilot studies of WRT process have shown very good results
- Initial testing has confirmed performance of pilot unit
- Media life will exceed two years depends on radium levels and volume treated
- Oswego selected the WRT Process for the following reasons:
 - □ Passive treatment system no additional plant operators
 - □ No chemical handling, storage or feed systems
 - □ No liquid waste streams or sludge disposal issues
 - □ No change in other water quality parameters
 - □ Produces water with low average radium levels ~ 2.5 pCi/L avg.
 - □ Least expensive process over a twenty year period
 - Equipment is owned by WRT, ownership of spent media is transferred to disposal site


WRT

Summary

- Oswego radionuclide project was a cooperative effort between the Village of Oswego, Smith Engineering Consultants, WRT, and the IEPA
- Designing and building five "first of their kind" treatment systems using a new technology was both challenging and rewarding

Questions?

For more information contact:

Roy Holub Smith Engineering 4500 Prime Parkway McHenry, IL 60050 Ph: (815) 385-1778 Fx: (815) 385-1781 rholub@smithengineering.com

Jerry Weaver Village of Oswego 100 Theodore Drive Oswego, IL 60543 Ph: (630) 554-3242 Fx: (630) 554-3306 jweaver@oswegoil.org Ron Dollar Water Remediation Technology 5460 Ward Road, Suite 100 Arvada, CO 80002 Ph: (303) 424-5355 Fx: (303)425-7497 rdollar@wrtnet.com